Rendering 3D virtual scenarios has become a popular alternative for generating per-pixel-labeled image datasets, especially in fields like autonomous driving. The approach is valuable for training neural perception models, such as semantic segmentation models, particularly when data might be scarce, expensive, or difficult to collect. However, fundamental questions persist within the research community regarding the generation and processing of these synthetic images, particularly a better understanding of the key factors influencing the performance of deep learning models trained with such synthetic images.
Manuel Silva, Antonio Seoane, Omar A. Mures, Antonio M. López, Jose A. Iglesias-Guitian